A common problem in econometrics, statistics, and machine learning is to estimate and make inference on functions that satisfy shape restrictions. For example, distribution functions are nondecreasing and range between zero and one, height growth charts are nondecreasing in age, and production functions are nondecreasing and quasi-concave in input quantities. We propose a method to enforce these restrictions ex post on point and interval estimates of the target function by applying functional operators. If an operator satisfies certain properties that we make precise, the shape-enforced point estimates are closer to the target function than the original point estimates and the shape-enforced interval estimates have greater coverage and shorter length than the original interval estimates. We show that these properties hold for six different operators that cover commonly used shape restrictions in practice: range, convexity, monotonicity, monotone convexity, quasi-convexity, and monotone quasi-convexity. We illustrate the results with two empirical applications to the estimation of a height growth chart for infants in India and a production function for chemical firms in China.
翻译:在计量经济学、统计和机器学习方面,一个常见的问题是估算和推断满足形状限制的功能。例如,分布功能不减少,范围介于零到一之间,高度增长图在年龄上没有减少,生产功能在投入量上没有减少和准冷却。我们提出一种方法,通过应用功能操作员在目标函数的点点和间距上执行这些限制估计。如果操作员满足了我们精确确定的某些特性,则形状加固点估计数比原点估计值更接近目标功能,形状加固间隔估计数比原估计值的覆盖面更大,长度更短。我们表明,这些特性适用于六个不同的操作员,这些操作员在实际中通常使用形状限制:范围、共性、单一性、单调和单调调和准调和单调和准调和。我们用两种实验性应用来估计印度婴儿高度增长图和中国化学公司生产功能的结果。我们用两种经验来说明结果。