Our goal is to predict the band structure of photonic crystals. This task requires us to compute a number of the smallest non-zero eigenvalues of the time-harmonic Maxwell operator depending on the chosen Bloch boundary conditions. We propose to use a block inverse iteration preconditioned with a suitably modified geometric multigrid method. Since we are only interested in non-zero eigenvalues, we eliminate the large null space by combining a lifting operator and a secondary multigrid method. To obtain suitable initial guesses for the iteration, we employ a generalized extrapolation technique based on the minimization of the Rayleigh quotient that significantly reduces the number of iteration steps and allows us to treat families of very large eigenvalue problems efficiently.


翻译:我们的目标是预测光子晶体的能带结构。这项任务要求我们计算取决于所选Bloch边界条件的时谐麦克斯韦特算子的许多最小非零特征值。我们建议使用一个经过适当修改的几何多重网格方法预处理的块逆迭代来完成任务。由于我们只关心非零特征值,因此我们通过组合提升算子和辅助多重网格方法来消除大型零空间。为了获得迭代的合适初始猜测,我们采用基于Rayleigh商最小化的广义外推技术,这显着减少了迭代步骤的数量,并使我们能够有效处理非常大的特征值问题系列。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月20日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员