Our goal is to predict the band structure of photonic crystals. This task requires us to compute a number of the smallest non-zero eigenvalues of the time-harmonic Maxwell operator depending on the chosen Bloch boundary conditions. We propose to use a block inverse iteration preconditioned with a suitably modified geometric multigrid method. Since we are only interested in non-zero eigenvalues, we eliminate the large null space by combining a lifting operator and a secondary multigrid method. To obtain suitable initial guesses for the iteration, we employ a generalized extrapolation technique based on the minimization of the Rayleigh quotient that significantly reduces the number of iteration steps and allows us to treat families of very large eigenvalue problems efficiently.
翻译:我们的目标是预测光子晶体的能带结构。这项任务要求我们计算取决于所选Bloch边界条件的时谐麦克斯韦特算子的许多最小非零特征值。我们建议使用一个经过适当修改的几何多重网格方法预处理的块逆迭代来完成任务。由于我们只关心非零特征值,因此我们通过组合提升算子和辅助多重网格方法来消除大型零空间。为了获得迭代的合适初始猜测,我们采用基于Rayleigh商最小化的广义外推技术,这显着减少了迭代步骤的数量,并使我们能够有效处理非常大的特征值问题系列。