Collaborative robotic systems will be a key enabling technology for current and future industrial applications. The main aspect of such applications is to guarantee safety for humans. To detect hazardous situations, current commercially available robotic systems rely on direct physical contact to the co-working person. To further advance this technology, there are multiple efforts to develop predictive capabilities for such systems. Using motion tracking sensors and pose estimation systems combined with adequate predictive models, potential episodes of hazardous collisions between humans and robots can be predicted. Based on the provided predictive information, the robotic system can avoid physical contact by adjusting speed or position. A potential approach for such systems is to perform human motion prediction with machine learning methods like Artificial Neural Networks. In our approach, the motion patterns of past seconds are used to predict future ones by applying a linear Tensor-on-Tensor regression model, selected according to a similarity measure between motion sequences obtained by Dynamic TimeWarping. For test and validation of our proposed approach, industrial pseudo assembly tasks were recorded with a motion capture system, providing unique traceable Cartesian coordinates $(x, y, z)$ for each human joint. The prediction of repetitive human motions associated with assembly tasks, whose data vary significantly in length and have highly correlated variables, has been achieved in real time.


翻译:合作机器人系统将是当前和未来工业应用的关键赋能技术。这种应用的主要方面是保证人类的安全。为了检测危险情况,目前商业上可用的机器人系统依靠与同事的直接物理接触。为了进一步推进这一技术,需要作出多种努力来开发这种系统的预测能力。使用运动跟踪传感器和提出估计系统,并配以适当的预测模型,可以预测人类与机器人之间可能发生的危险碰撞。根据所提供的预测信息,机器人系统可以通过调整速度或位置来避免物理接触。这种系统的一个潜在办法是利用人工神经网络等机器学习方法进行人类运动预测。在我们的方法中,过去几秒钟的运动模式被用来通过应用直线天文对传感器的回归模型来预测未来。根据动态时间警告所获取的运动序列之间的类似度来选择这些模型。为了测试和验证我们拟议的方法,工业假组装任务记录为运动捕捉系统,提供独特的可追踪的碳酸盐坐标$(x,y,z美元),这种系统的潜在方法是使用人工神经网络等机器学习方法进行人类运动预测。在我们的方法中,利用过去几秒钟的移动模式来预测未来系统预测,根据动态测算出与每个人类的高度的反复性变变变变的变量,其实际变变变变的人类的变变的变的变的变。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员