Inverse probability weighting (IPW) is a general tool in survey sampling and causal inference, used both in Horvitz-Thompson estimators, which normalize by the sample size, and H\'ajek/self-normalized estimators, which normalize by the sum of the inverse probability weights. In this work we study a family of IPW estimators, first proposed by Trotter and Tukey in the context of Monte Carlo problems, that are normalized by an affine combination of these two terms. We show how selecting an estimator from this family in a data-dependent way to minimize asymptotic variance leads to an iterative procedure that converges to an estimator with connections to regression control methods. We refer to this estimator as an adaptively normalized estimator. For mean estimation in survey sampling, this estimator has asymptotic variance that is never worse than the Horvitz--Thompson or H\'ajek estimators, and is smaller except in edge cases. Going further, we show that adaptive normalization can be used to propose improvements of the augmented IPW (AIPW) estimator, average treatment effect (ATE) estimators, and policy learning objectives. Appealingly, these proposals preserve both the asymptotic efficiency of AIPW and the regret bounds for policy learning with IPW objectives, and deliver consistent finite sample improvements in simulations for all three of mean estimation, ATE estimation, and policy learning.


翻译:反概率加权( IPW) 是调查抽样和因果推断的一般工具, 用于 Horvitz- Thompson 测算器, 该测算器以样本大小为常态, 用于 Horvitz- Thompson 测算器, 以样本大小为常态, 用于 Hrvitz- Thompson 测算器, 和 H'ajek/ 自我标准化测算器, 以反概率加权数之和为常态。 在这项工作中, 我们研究了由Trotter 和 Tukey 在蒙特卡洛问题中首次提议的 IP 测算器系列测算器, 这些测算器与这两个术语的趋同性结合, 我们展示了如何从这个组中选取一个测算器, 以数据根据数据来尽可能低的测算器, 以尽可能低的测算法, 我们用这个测算器作为适应性测算器, 将所有 IPW 的测算器 的测算法 和测算器 的测算法,, 将 测算法 提高 的 性 的 性 性 性 和 分析 分析 分析 分析 分析 的 分析 分析 分析 的, 分析 分析 分析 分析 的 分析 的 的 的 的 分析 的 的 的 和 分析 分析 的 的 分析 的 的 的 的 的 分析 分析 分析 分析 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 分析 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 和 的 的 的 的 的 的 的 和 的 的 的 的 的 和 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 和 的 的 的 的 的 的 的 的 的

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
7+阅读 · 2018年10月12日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月12日
Arxiv
5+阅读 · 2021年4月21日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
7+阅读 · 2018年10月12日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员