Diffusion Transformers (DiT) have emerged as a powerful architecture for image and video generation, offering superior quality and scalability. However, their practical application suffers from inherent dynamic feature instability, leading to error amplification during cached inference. Through systematic analysis, we identify the absence of long-range feature preservation mechanisms as the root cause of unstable feature propagation and perturbation sensitivity. To this end, we propose Skip-DiT, a novel DiT variant enhanced with Long-Skip-Connections (LSCs) - the key efficiency component in U-Nets. Theoretical spectral norm and visualization analysis demonstrate how LSCs stabilize feature dynamics. Skip-DiT architecture and its stabilized dynamic feature enable an efficient statical caching mechanism that reuses deep features across timesteps while updating shallow components. Extensive experiments across image and video generation tasks demonstrate that Skip-DiT achieves: (1) 4.4 times training acceleration and faster convergence, (2) 1.5-2 times inference acceleration without quality loss and high fidelity to original output, outperforming existing DiT caching methods across various quantitative metrics. Our findings establish long-skip connections as critical architectural components for training stable and efficient diffusion transformers.
翻译:暂无翻译