This paper proposes the capped least squares regression with an adaptive resistance parameter, hence the name, adaptive capped least squares regression. The key observation is, by taking the resistant parameter to be data dependent, the proposed estimator achieves full asymptotic efficiency without losing the resistance property: it achieves the maximum breakdown point asymptotically. Computationally, we formulate the proposed regression problem as a quadratic mixed integer programming problem, which becomes computationally expensive when the sample size gets large. The data-dependent resistant parameter, however, makes the loss function more convex-like for larger-scale problems. This makes a fast randomly initialized gradient descent algorithm possible for global optimization. Numerical examples indicate the superiority of the proposed estimator compared with classical methods. Three data applications to cancer cell lines, stationary background recovery in video surveillance, and blind image inpainting showcase its broad applicability.
翻译:本文用适应性抗力参数来提出最小回归方块的上限值, 也就是名称, 适应性上限值最小方块的回归。 关键观察是, 将抗性参数作为数据依赖性参数, 拟议的估计值可以在不失去抗性属性的情况下实现完全无症状效率: 它能实现最大分解点的偶然性。 计算中, 我们将拟议的回归问题作为四面混合整形编程问题, 当样本大小大时, 它会变得计算昂贵。 然而, 数据依赖性抗力参数使损失函数更类似大型问题。 这使得快速随机初始化梯度下行算法能够实现全球优化。 数字示例显示, 与经典方法相比, 拟议的估计值的优势。 三个数据应用到癌症细胞线, 视频监控中的固定背景恢复, 以及盲图显示其广泛适用性 。