We propose a fairness measure relaxing the equality conditions in the popular equal odds fairness regime for classification. We design an iterative, model-agnostic, grid-based heuristic that calibrates the outcomes per sensitive attribute value to conform to the measure. The heuristic is designed to handle high arity attribute values and performs a per attribute sanitization of outcomes across different protected attribute values. We also extend our heuristic for multiple attributes. Highlighting our motivating application, fraud detection, we show that the proposed heuristic is able to achieve fairness across multiple values of a single protected attribute, multiple protected attributes. When compared to current fairness techniques, that focus on two groups, we achieve comparable performance across several public data sets.
翻译:我们提出一个公平措施,以放宽民众平等竞争公平制度中的平等条件,用于分类。我们设计了一个迭代、模型 -- -- 不可知、基于网格的黑奴主义,对每个敏感属性值的结果进行校准,以符合该标准。超自然主义旨在处理高度异性属性值,并对不同受保护属性值的结果进行每个属性的清洁处理。我们还扩展了我们对于多种属性的超自然特征。我们突出强调了我们的激励应用、欺诈检测,我们表明,拟议的超自然主义能够实现单一受保护属性、多个受保护属性的多个值之间的公平。与当前侧重于两个组的公平技术相比,我们在若干公共数据集中实现了可比的绩效。