L2 regularization for weights in neural networks is widely used as a standard training trick. However, L2 regularization for gamma, a trainable parameter of batch normalization, remains an undiscussed mystery and is applied in different ways depending on the library and practitioner. In this paper, we study whether L2 regularization for gamma is valid. To explore this issue, we consider two approaches: 1) variance control to make the residual network behave like identity mapping and 2) stable optimization through the improvement of effective learning rate. Through two analyses, we specify the desirable and undesirable gamma to apply L2 regularization and propose four guidelines for managing them. In several experiments, we observed the increase and decrease in performance caused by applying L2 regularization to gamma of four categories, which is consistent with our four guidelines. Our proposed guidelines were validated through various tasks and architectures, including variants of residual networks and transformers.


翻译:神经网络重量的L2正规化被广泛用作一种标准的训练技巧,然而,作为可培训的批量正常化参数,伽马语的L2正规化仍然是个未讨论的神秘问题,其应用方式取决于图书馆和从业人员。我们在本文件中研究伽马语的L2正规化是否有效。为了探讨这一问题,我们考虑采取两种办法:(1) 差异控制,使剩余网络的行为像身份绘图一样,(2) 通过提高有效学习率实现稳定的优化。我们通过两个分析,明确了适用L2正规化的可取性和不可取的伽马语,并提出了管理这些特性的四项准则。我们在若干实验中注意到,对四种类别伽马语适用L2正规化,这符合我们的四项准则。我们提出的准则是通过各种任务和结构,包括残余网络和变异器的变异体,得到验证的。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月4日
Arxiv
0+阅读 · 2022年6月29日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关论文
Arxiv
0+阅读 · 2022年7月4日
Arxiv
0+阅读 · 2022年6月29日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
12+阅读 · 2019年3月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员