This paper revisits the performance of Rademacher random projections, establishing novel statistical guarantees that are numerically sharp and non-oblivious with respect to the input data. More specifically, the central result is the Schur-concavity property of Rademacher random projections with respect to the inputs. This offers a novel geometric perspective on the performance of random projections, while improving quantitatively on bounds from previous works. As a corollary of this broader result, we obtained the improved performance on data which is sparse or is distributed with small spread. This non-oblivious analysis is a novelty compared to techniques from previous work, and bridges the frequently observed gap between theory and practise. The main result uses an algebraic framework for proving Schur-concavity properties, which is a contribution of independent interest and an elegant alternative to derivative-based criteria.
翻译:本文重新审视了Rademacher随机投影的性能,在输入数据方面建立了新的统计保证,这些保证在数值上是尖锐的,并且与输入数据是非遗忘的。更具体地说,核心结果是Rademacher随机投影具有与输入数据相关的Schur-concavity属性。这为随机投影的性能提供了一种新颖的几何视角,并在数量上改进了以前作品的边界限制。作为这个更广泛的结果的一个推论,我们得到了在数据稀疏或分布范围较小的情况下改进的性能。这种非遗忘性能分析与以前工作的技术相比是一种新颖性,并且弥合了理论和实践之间经常出现的差距。主要结果使用了证明Schur-concavity属性的代数框架,这是一种独立于导数的标准的贡献,也是导出相关技术的一种优雅的替代方式。