A parametric instability of an incompressible, viscous, and Boussinesq fluid layer bounded between two parallel planes is investigated numerically. The layer is assumed to be inclined at an angle with horizontal. The planes bounding the layer are subjected to a time-periodic heating. Above a threshold value, the temperature gradient across the layer leads to an instability of an initially quiescent state or a parallel flow, depending upon the angle of inclination. The Floquet analysis of the underlying system reveals that under modulation, the instability sets in as a convective roll pattern executing harmonic or subharmonic oscillations, depending upon the modulation, the angle of inclination, and Prandtl number of the fluid. Under modulation, the value of the angle of inclination for the codimension-2 point is found to be a nonconstant function of the amplitude and the frequency of modulation. Further, the instability response in the fluid layer as a longitudinal mode is always harmonic whereas the instability response as a transverse mode is harmonic, or subharmonic, or bicritical depending upon the modulation. The temperature modulation offers a good control of time-periodic heat and mass transfer in the inclined layer convection.
翻译:对介于两个平行平面之间的压抑性、粘度和布西内斯基流层的偏差性不稳定性进行了数字调查。 假设该层以水平为角倾斜。 将层捆绑在一起的平面会受时间周期加热的影响。 高于临界值, 跨层的温度梯度会根据倾角的角导致最初的西发状态或平行流的不稳定性。 底部系统的Floquet分析显示, 在调制下, 不稳定性组作为对流模式的对流滚式组合, 进行调和或亚调和性振动, 取决于流的调制、 倾角和 冲压数。 在调制下, 调和2点的倾角角值是振动和调和频率的非共振函数。 此外, 流层的不稳定性反应总是具有调和性, 而作为反向模式的不稳定性反应是调和次调的, 或按调制周期的双振, 取决于调调温度的调和调制。