Planetary rover missions must utilize machine learning-based perception to continue extra-terrestrial exploration with little to no human presence. Martian terrain segmentation has been critical for rover navigation and hazard avoidance to perform further exploratory tasks, e.g. soil sample collection and searching for organic compounds. Current Martian terrain segmentation models require a large amount of labeled data to achieve acceptable performance, and also require retraining for deployment across different domains, i.e. different rover missions, or different tasks, i.e. geological identification and navigation. This research proposes a semi-supervised learning approach that leverages unsupervised contrastive pretraining of a backbone for a multi-mission semantic segmentation for Martian surfaces. This model will expand upon the current Martian segmentation capabilities by being able to deploy across different Martian rover missions for terrain navigation, by utilizing a mixed-domain training set that ensures feature diversity. Evaluation results of using average pixel accuracy show that a semi-supervised mixed-domain approach improves accuracy compared to single domain training and supervised training by reaching an accuracy of 97% for the Mars Science Laboratory's Curiosity Rover and 79.6% for the Mars 2020 Perseverance Rover. Further, providing different weighting methods to loss functions improved the models correct predictions for minority or rare classes by over 30% using the recall metric compared to standard cross-entropy loss. These results can inform future multi-mission and multi-task semantic segmentation for rover missions in a data-efficient manner.
翻译:火星地形分割对于巡洋航行和避免危险对于执行进一步的探索任务至关重要,例如土壤样本收集和寻找有机化合物。 当前的火星地形分割模型需要大量贴标签的数据才能达到可接受的性能,还需要对不同领域的部署进行再培训,即不同的越洋任务或不同任务,即地质识别和导航。这项研究建议采用半监督的学习方法,利用无人监督的对比性前训练骨干,为火星表面多任务层进行多任务层分解,以完成进一步的探索任务,例如土壤样本收集和寻找有机化合物。 目前的火星地形分割模型需要大量贴有标签的数据才能达到可接受的性能,还需要对不同领域的部署进行再培训,例如不同的越洋任务或不同任务,即地质识别和导航等。 这项研究建议采用半超越洋混合多轨道精确方法,与单一域培训相比,通过达到97%的跨轨道前训练,对火星科学实验室表面的多轨道分层分层分层进行进一步的对比。 这些模型将扩大当前火星分层分层分层分层能力,为火星实验室的分层分析提供更精确的分级的分层数据模型,以进一步的分层计算。