I introduce and study a new notion of Archimedeanity for binary and non-binary choice between options that live in an abstract Banach space, through a very general class of choice models, called sets of desirable option sets. In order to be able to bring an important diversity of contexts into the fold, amongst which choice between horse lottery options, I pay special attention to the case where these linear spaces don't include all `constant' options.I consider the frameworks of conservative inference associated with Archimedean (and coherent) choice models, and also pay quite a lot of attention to representation of general (non-binary) choice models in terms of the simpler, binary ones.The representation theorems proved here provide an axiomatic characterisation for, amongst many other choice methods, Levi's E-admissibility and Walley-Sen maximality.


翻译:我介绍并研究一种新概念,即对于生活在抽象的Banach空间的二进制和非二进制选择,通过一种非常一般的选择模式,即所谓的一套理想的选择模式。 为了能够将各种环境(包括马乐乐选项之间的选择)引入折叠中,我特别关注这样的情况:这些线性空间不包括所有“稳妥”选项。 我认为与Archimede(和连贯的)选择模式相关的保守推论框架,并且非常关注一般(非二进制)选择模式在简单、二进制选择模式中的代表性。 这里所证明的代表为Lev的“E-容许性”和Walley-Sen 最高性等许多其他选择方法提供了一种不言理的特征。

0
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月8日
Arxiv
5+阅读 · 2020年10月14日
Arxiv
6+阅读 · 2020年10月8日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
8+阅读 · 2019年2月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员