We consider the least squares regression problem, penalized with a combination of the $\ell_{0}$ and squared $\ell_{2}$ penalty functions (a.k.a. $\ell_0 \ell_2$ regularization). Recent work shows that the resulting estimators are of key importance in many high-dimensional statistical settings. However, exact computation of these estimators remains a major challenge. Indeed, modern exact methods, based on mixed integer programming (MIP), face difficulties when the number of features $p \sim 10^4$. In this work, we present a new exact MIP framework for $\ell_0\ell_2$-regularized regression that can scale to $p \sim 10^7$, achieving speedups of at least $5000$x, compared to state-of-the-art exact methods. Unlike recent work, which relies on modern commercial MIP solvers, we design a specialized nonlinear branch-and-bound (BnB) framework, by critically exploiting the problem structure. A key distinguishing component in our framework lies in efficiently solving the node relaxations using a specialized first-order method, based on coordinate descent (CD). Our CD-based method effectively leverages information across the BnB nodes, through using warm starts, active sets, and gradient screening. In addition, we design a novel method for obtaining dual bounds from primal CD solutions, which certifiably works in high dimensions. Experiments on synthetic and real high-dimensional datasets demonstrate that our framework is not only significantly faster than the state of the art, but can also deliver certifiably optimal solutions to statistically challenging instances that cannot be handled with existing methods. We open source the implementation through our toolkit L0BnB.


翻译:我们认为最低平方位回归问题, 由 $\ ell\ @0} 美元和 平方 $\ ell\\\\\ $ $ 美元混合计算, 罚款函数( a.k.a. $\ ell_0\ 0\ ell_ 2美元) 的组合, 受最低平方位回归问题的制约。 最近的工作表明, 由此得出的估算值在许多高层次统计环境中至关重要。 然而, 这些估算值的精确计算仍是一个重大挑战。 事实上, 以混合整数编程( MIP) 为基础的现代精确方法, 当特性数量 $p 管理 10\ sim 10 4美元 和 平方位 美元组合时, 我们的工作提出了一个新的精确 MIP 框架框架框架, $\ $@ ell_ 0\ ell_ 2$ 常规回归值可以缩放到 $@simmissimmission 10$7, 实现至少 $ 5000xxxxxx 。 与最近的工作不同, 我们的工作依靠现代商业 MIP 的 MIP 解决方案设计设计, 我们的设计设计, 我们的设计设计, 我们设计的非线型分支分支分支分支分位框架, 只能使用最佳解决方案, 也无法快速化, 快速地展示。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
【2019-26期】This Week in Extracellular Vesicles
外泌体之家
11+阅读 · 2019年6月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月5日
VIP会员
相关资讯
【2019-26期】This Week in Extracellular Vesicles
外泌体之家
11+阅读 · 2019年6月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员