We propose a new method for clustering of functional data using a $k$-means framework. We work within the elastic functional data analysis framework, which allows for decomposition of the overall variation in functional data into amplitude and phase components. We use the amplitude component to partition functions into shape clusters using an automated approach. To select an appropriate number of clusters, we additionally propose a novel Bayesian Information Criterion defined using a mixture model on principal components estimated using functional Principal Component Analysis. The proposed method is motivated by the problem of posterior exploration, wherein samples obtained from Markov chain Monte Carlo algorithms are naturally represented as functions. We evaluate our approach using a simulated dataset, and apply it to a study of acute respiratory infection dynamics in San Luis Potos\'{i}, Mexico.
翻译:我们提出使用美元汇率框架对功能数据进行分组的新方法,我们在弹性功能数据分析框架内开展工作,以便能够将功能数据的整体差异分解成振幅和相位元件,我们使用振幅元件将函数分割成形状组,采用自动化方法,选择适当数量的组群,我们又提议采用使用主要成分分析功能估算主要成分的混合模型来界定新的贝叶斯信息标准,拟议方法的动机是后方探索问题,从Markov链 Monte Carlo算法中获得的样本自然代表为功能。我们使用模拟数据集评估我们的方法,并将其应用于墨西哥圣路易斯波托斯斯 ⁇ 伊}的急性呼吸道感染动态研究。