Recently, artificial intelligence technologies and algorithms have become a major focus for advancements in treatment planning for radiation therapy. As these are starting to become incorporated into the clinical workflow, a major concern from clinicians is not whether the model is accurate, but whether the model can express to a human operator when it does not know if its answer is correct. We propose to use Monte Carlo dropout (MCDO) and the bootstrap aggregation (bagging) technique on deep learning models to produce uncertainty estimations for radiation therapy dose prediction. We show that both models are capable of generating a reasonable uncertainty map, and, with our proposed scaling technique, creating interpretable uncertainties and bounds on the prediction and any relevant metrics. Performance-wise, bagging provides statistically significant reduced loss value and errors in most of the metrics investigated in this study. The addition of bagging was able to further reduce errors by another 0.34% for Dmean and 0.19% for Dmax, on average, when compared to the baseline framework. Overall, the bagging framework provided significantly lower MAE of 2.62, as opposed to the baseline framework's MAE of 2.87. The usefulness of bagging, from solely a performance standpoint, does highly depend on the problem and the acceptable predictive error, and its high upfront computational cost during training should be factored in to deciding whether it is advantageous to use it. In terms of deployment with uncertainty estimations turned on, both frameworks offer the same performance time of about 12 seconds. As an ensemble-based metaheuristic, bagging can be used with existing machine learning architectures to improve stability and performance, and MCDO can be applied to any deep learning models that have dropout as part of their architecture.


翻译:最近,人工智能技术和算法已成为辐射疗法治疗规划进展的一个主要重点。随着这些技术开始被纳入临床工作流程,临床医师的主要关切不是模型是否准确,而是模型在不知道答案是否正确时能否向人类操作者表达模型是否正确。我们提议使用蒙特卡洛辍学(MCDO)和关于深层学习模型的靴带汇总(拖动)技术,以得出辐射治疗剂量预测的不确定性估计。我们表明,这两个模型都能够绘制合理的不确定性图,而且随着我们提议的缩放技术,在预测和任何相关指标方面创造了可解释的不确定性和界限。从性能上看,袋状在本次研究所调查的大多数指标中提供了统计上显著的减少损失价值和错误。加袋状能够进一步减少误差0.34%(MCDO)和0.19 %(Boots),与基线模型相比,平均可以减少误差值。总体而言,包状框架提供了远低得多的2.62的MAE,与基准框架2.87的MAE相比,创造了可解释的可解释的不确定性和界限。从业绩上看,从深度变换算,从稳定性到高性度的计算,从高性度的计算,从高性度的逻辑到高度的计算学期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期性值是取决于一个轨道的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期到12的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期到期的计算,其至期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年3月9日
Arxiv
0+阅读 · 2021年3月7日
VIP会员
相关VIP内容
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员