Online multi-object tracking (MOT) is an active research topic in the domain of computer vision. In this paper, a CRF-based framework is put forward to tackle the tracklet inactivation issues in online MOT problems. We apply the proposed framework to one of the state-of-the-art online MOT trackers, Tracktor++. The baseline algorithm for online MOT has the drawback of simple strategy on tracklet inactivation, which relies merely on tracking hypotheses' classification scores partitioned by using a fixed threshold. To overcome such a drawback, a discrete conditional random field (CRF) is developed to exploit the intra-frame relationship between tracking hypotheses. Separate sets of feature functions are designed for the unary and binary terms in the CRF so as to cope with various challenges in practical situations. The hypothesis filtering and dummy nodes techniques are employed to handle the problem of varying CRF nodes in the MOT context. In this paper, the inference of CRF is achieved by using the loopy belief propagation algorithm, and the parameters of the CRF are determined by utilizing the maximum likelihood estimation method. Experimental results demonstrate that the developed tracker with our CRF-based framework outperforms the baseline on the MOT16 and MOT17 datasets. The extensibility of the proposed method is further validated by an extensive experiment.
翻译:在线多点跟踪(MOT)是计算机视觉领域一个积极的研究专题。本文提出一个基于通用报告格式的框架,以解决在线MOT问题中的轨道停止活动问题。我们将拟议的框架应用于最先进的在线MOT追踪器之一,即Chattor++。在线MOT的基准算法在轨道不活动方面有一个简单的战略的缺陷,它仅仅依靠使用固定阈值来跟踪假设分类分数。为克服这种缺陷,将开发一个独立、有条件的随机域(CRF),以利用跟踪假设之间的内部关系。为通用报告格式中的单词和二元词设计了单独的地物功能,以便在实际情况下应对各种挑战。使用假设过滤法和假节点计算法来处理在MOT背景下不同的通用报告格式节点问题。在本文中,通过使用循环性信仰传播算法实现通用报告格式的推断,而通用报告格式的参数则通过使用最大可能性估计法来确定。在最大的可能性估计方法上设计了通用报告格式的单数和双数功能。17 实验性结果模型的模型是利用我们所拟订的通用的模型模型的模型。