Deep learning advanced face recognition to an unprecedented accuracy. However, understanding how local parts of the face affect the overall recognition performance is still mostly unclear. Among others, face swap has been experimented to this end, but just for the entire face. In this paper, we propose to swap facial parts as a way to disentangle the recognition relevance of different face parts, like eyes, nose and mouth. In our method, swapping parts from a source face to a target one is performed by fitting a 3D prior, which establishes dense pixels correspondence between parts, while also handling pose differences. Seamless cloning is then used to obtain smooth transitions between the mapped source regions and the shape and skin tone of the target face. We devised an experimental protocol that allowed us to draw some preliminary conclusions when the swapped images are classified by deep networks, indicating a prominence of the eyes and eyebrows region. Code available at https://github.com/clferrari/FacePartsSwap
翻译:深层学习的先进面部识别具有前所未有的准确性。 但是,了解面部的局部部分如何影响总体识别性能仍大多不清楚。 除其他外, 面部交换已经为此进行了实验, 但仅针对整个面部。 在本文中, 我们提议将面部部分互换, 以解开不同面部( 如眼睛、 鼻子和嘴) 的认知相关性。 在我们的方法中, 将源面的部件从源面转换到目标面部时, 使用3D 来安装前的3D, 从而在各部分之间建立密集的像素通信, 同时处理差异。 无缝合的克隆随后被用来在所绘制的来源区域与目标面部的形状和肤色之间实现平稳过渡。 我们设计了一个实验性协议, 使我们能够在对图象进行深层网络分类时得出一些初步结论, 这表明眼睛和眉眼部区域的显著性。 代码可在 https://github. com/ clferrari/ FacePartsSwap 上查阅 。