Sequential recommender models are essential components of modern industrial recommender systems. These models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform. Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online. Intent modeling is thus critical for understanding users and optimizing long-term user experience. We propose a probabilistic modeling approach and formulate user intent as latent variables, which are inferred based on user behavior signals using variational autoencoders (VAE). The recommendation policy is then adjusted accordingly given the inferred user intent. We demonstrate the effectiveness of the latent user intent modeling via offline analyses as well as live experiments on a large-scale industrial recommendation platform.
翻译:序列推荐人模型是现代工业推荐人系统的基本组成部分。 这些模型学会预测用户可能根据平台上的互动历史与下一个项目进行互动。 然而,大多数顺序推荐人缺乏对用户意图的更高层次的理解,而用户意图往往在网上推动用户行为。 因此,意图建模对于了解用户和优化长期用户经验至关重要。 我们提出一种概率建模方法,并将用户意图作为潜在变量,根据用户行为信号使用变异自动解码器(VAE)推导出来。 然后,根据推断用户意图对建议政策进行相应调整。 我们展示了通过离线分析进行潜在用户意图建模以及大规模工业建议平台现场实验的有效性。