Session-based recommendation (SBR) aims to predict the user's next action based on short and dynamic sessions. Recently, there has been an increasing interest in utilizing various elaborately designed graph neural networks (GNNs) to capture the pair-wise relationships among items, seemingly suggesting the design of more complicated models is the panacea for improving the empirical performance. However, these models achieve relatively marginal improvements with exponential growth in model complexity. In this paper, we dissect the classical GNN-based SBR models and empirically find that some sophisticated GNN propagations are redundant, given the readout module plays a significant role in GNN-based models. Based on this observation, we intuitively propose to remove the GNN propagation part, while the readout module will take on more responsibility in the model reasoning process. To this end, we propose the Multi-Level Attention Mixture Network (Atten-Mixer), which leverages both concept-view and instance-view readouts to achieve multi-level reasoning over item transitions. As simply enumerating all possible high-level concepts is infeasible for large real-world recommender systems, we further incorporate SBR-related inductive biases, i.e., local invariance and inherent priority to prune the search space. Experiments on three benchmarks demonstrate the effectiveness and efficiency of our proposal. We also have already launched the proposed techniques to a large-scale e-commercial online service since April 2021, with significant improvements of top-tier business metrics demonstrated in the online experiments on live traffic.
翻译:基于会议的建议(SBR)旨在预测用户在短和动态会议基础上的下一步行动。最近,人们越来越有兴趣利用各种精心设计的图形神经网络(GNN)来捕捉各项目之间的双向关系,似乎建议设计更复杂的模型是改进实验性表现的灵丹妙药。然而,这些模型在模型复杂性的指数增长中取得了相对微小的改进。在本文件中,我们解析了基于GNNS的经典SBR模型,并从经验上发现一些复杂的GNNN的传播是多余的,因为读出模块在基于GNN的模型中起着重要作用。基于这一观察,我们直觉地提议删除GNN传播部分,而读出模块将在模型推理过程中承担更多的责任。为此,我们提议多层次关注混合网络(Atten-Mixer),它利用概念视图和实例浏览读出实现项目转换的多层次推理。由于所有可能的高层次概念都无法在基于GNNN的模型模型模型模型模型模型模型模型模型模型中发挥重要作用。基于这一观察,我们无意中提议删除部分将删除GNNNNM传播的部分部分删除部分删除,而删除模块将删除模块部分将删除,而将删除部分部分部分部分部分将删除部分部分将删除,而要删除后,而进一步纳入到大规模的大规模搜索系统。我们所推出的高级的大规模的系统。我们开始在大规模搜索系统。我们所推出的系统。我们所推出的高级的系统在大规模实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性地试验性地试验性试验性在大规模的系统。我们所推出的大规模的系统。我们所推出的大规模的系统。我们所推出的大规模的大规模实验性实验性试验性地试验性实验性实验性实验性在大规模的系统,在大规模实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性地试验性地试验性地试验性地试验性地试验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性地