We introduce \textit{Nocturne}, a new 2D driving simulator for investigating multi-agent coordination under partial observability. The focus of Nocturne is to enable research into inference and theory of mind in real-world multi-agent settings without the computational overhead of computer vision and feature extraction from images. Agents in this simulator only observe an obstructed view of the scene, mimicking human visual sensing constraints. Unlike existing benchmarks that are bottlenecked by rendering human-like observations directly using a camera input, Nocturne uses efficient intersection methods to compute a vectorized set of visible features in a C++ back-end, allowing the simulator to run at $2000+$ steps-per-second. Using open-source trajectory and map data, we construct a simulator to load and replay arbitrary trajectories and scenes from real-world driving data. Using this environment, we benchmark reinforcement-learning and imitation-learning agents and demonstrate that the agents are quite far from human-level coordination ability and deviate significantly from the expert trajectories.
翻译:我们引入了一个新的 2D 驱动模拟器, 用于在部分可观察性下调查多试剂协调, 用于调查多试剂协调的 2D 驱动模拟器。 Ncurbe 的焦点是, 在不考虑计算机视觉和从图像中提取特征的计算间接费用的情况下, 能够对现实世界多试剂环境中的推论和思想理论进行研究。 这个模拟器的代理器只观察到一个屏障的场景, 模仿人类视觉感测限制。 与现有的基准不同, 现有基准通过直接使用相机输入来进行类似人类的观测而被阻塞, Norturne使用高效的交叉方法对 C+++后端的一组可见特性进行计算, 允许模拟器每秒以2,000+$的速度运行。 使用开放源轨迹和映像数据, 我们构建一个模拟器, 以装载和重弹射真实世界驱动数据中的任意轨迹和场景。 我们用这个环境对强化学习和模仿代理器进行基准, 并证明这些代理器远离人类层面的协调能力, 并显著偏离专家轨道 。