We study two-layer neural networks whose domain and range are Banach spaces with separable preduals. In addition, we assume that the image space is equipped with a partial order, i.e. it is a Riesz space. As the nonlinearity we choose the lattice operation of taking the positive part; in case of $\mathbb R^d$-valued neural networks this corresponds to the ReLU activation function. We prove inverse and direct approximation theorems with Monte-Carlo rates, extending existing results for the finite-dimensional case. In the second part of the paper, we consider training such networks using a finite amount of noisy observations from the regularisation theory viewpoint. We discuss regularity conditions known as source conditions and obtain convergence rates in a Bregman distance in the regime when both the noise level goes to zero and the number of samples goes to infinity at appropriate rates.


翻译:我们研究的是两层神经网络,其域和范围是Banach空间,具有分解的前两个部分。此外,我们假设图像空间配有部分顺序,即Riesz空间。作为非线性,我们选择了以正部分为主的固定操作;如果是$mathbb R ⁇ d$价值的神经网络,则与RELU的激活功能相对应。我们证明,以蒙特-Carlo的速率来反向和直接近比方理论,扩大了现有定数情况的结果。在论文第二部分,我们考虑从定时理论观点的角度使用有限的噪音观察来训练这些网络。我们讨论被称为源条件的常规性条件,并在Rregman的距离内取得比列格曼的趋同率,当噪音水平达到零和样品数量以适当速度走向不精确时。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
60+阅读 · 2020年3月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Bootstrapping the error of Oja's Algorithm
Arxiv
0+阅读 · 2021年6月28日
Arxiv
0+阅读 · 2021年6月27日
VIP会员
相关资讯
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员