This article presents a Hawkes process model with Markovian baseline intensities for high-frequency order book data modeling. We classify intraday order book trading events into a range of categories based on their order types and the price changes after their arrivals. To capture the stimulating effects between multiple types of order book events, we use the multivariate Hawkes process to model the self- and mutually-exciting event arrivals. We also integrate a Markovian baseline intensity into the event arrival dynamic, by including the impacts of order book liquidity state and time factor to the baseline intensity. A regression-based non-parametric estimation procedure is adopted to estimate the model parameters in our Hawkes+Markovian model. To eliminate redundant model parameters, LASSO regularization is incorporated in the estimation procedure. Besides, model selection method based on Akaike Information Criteria is applied to evaluate the effect of each part of the proposed model. An implementation example based on real LOB data is provided. Through the example, we study the empirical shapes of Hawkes excitement functions, the effects of liquidity state as well as time factors, the LASSO variable selection, and the explanatory power of Hawkes and Markovian elements to the dynamics of the order book.
翻译:文章展示了霍克斯进程模型, 包括Markovian 高频订单书数据模型的基线强度; 我们根据订单类型和到货后的价格变化, 将日间订单交易活动分类为一系列类别; 为了捕捉多种类型的订单书事件之间的刺激效应, 我们使用多变量鹰进程来模拟自我和相互刺激的事件到达。 我们还将马尔科维亚基线强度纳入事件抵达动态, 包括订单书流动性状况和时间因素对基线强度的影响。 采用了基于回归的非参数估计程序来估计我们霍克斯+马尔科维安模型中的模型参数。 为了消除多余的模型参数, 将LASSO正规化纳入估算程序。 此外, 根据Akaike信息标准进行模型选择的模型方法用于评价拟议模型每个部分的影响。 提供了基于实际LOB数据的实施示例。 我们通过实例研究霍克斯刺激功能的经验形状、 流动性状态的效果以及时间因素、 LASSO变量选择以及霍克斯和Markov 序列要素的解释性能。