This chapter presents an overview of a specific form of limited dependent variable models, namely discrete choice models, where the dependent (response or outcome) variable takes values which are discrete, inherently ordered, and characterized by an underlying continuous latent variable. Within this setting, the dependent variable may take only two discrete values (such as 0 and 1) giving rise to binary models (e.g., probit and logit models) or more than two values (say $j=1,2, \ldots, J$, where $J$ is some integer, typically small) giving rise to ordinal models (e.g., ordinal probit and ordinal logit models). In these models, the primary goal is to model the probability of responses/outcomes conditional on the covariates. We connect the outcomes of a discrete choice model to the random utility framework in economics, discuss estimation techniques, present the calculation of covariate effects and measures to assess model fitting. Some recent advances in discrete data modeling are also discussed. Following the theoretical review, we utilize the binary and ordinal models to analyze public opinion on marijuana legalization and the extent of legalization -- a socially relevant but controversial topic in the United States. We obtain several interesting results including that past use of marijuana, belief about legalization and political partisanship are important factors that shape the public opinion.
翻译:本章概述一种特定形式的有限依赖变量模型,即独立的选择模式,依赖(反应或结果)变量取自独立的(或结果)变量的数值,这些数值是分立的、固有的、具有潜在潜在潜在变量特征的。在这一背景下,依赖变量只取两个独立的数值(如0和1),产生二元模型(如probit和logit模型)或两个以上数值(如probit和logit模型),或两个以上数值(如$j=1,2,\ldots,J$,其中美元是部分整数,通常是小数美元),从而产生正态模型(如Odinal probit和Odinallogit模型)。在这些模型中,主要目的是模拟以共变数为条件的反应/结果的概率。我们将离散选择模式的结果与随机的实用框架(例如probit和logit )或两个以上数值(如palitalit )或两个以上数值(如美元=1.2美元,计算变数,这是离散数据模型中最近的一些进展,也是很小的),讨论。在理论审查后,我们利用双元和正态模型来分析公众观点,分析公众观点分析公众观点,包括了在社会上对大麻的公证化,但具有重大信仰。