Generalization bounds which assess the difference between the true risk and the empirical risk, have been studied extensively. However, to obtain bounds, current techniques use strict assumptions such as a uniformly bounded or a Lipschitz loss function. To avoid these assumptions, in this paper, we follow an alternative approach: we relax uniform bounds assumptions by using on-average bounded loss and on-average bounded gradient norm assumptions. Following this relaxation, we propose a new generalization bound that exploits the contractivity of the log-Sobolev inequalities. These inequalities add an additional loss-gradient norm term to the generalization bound, which is intuitively a surrogate of the model complexity. We apply the proposed bound on Bayesian deep nets and empirically analyze the effect of this new loss-gradient norm term on different neural architectures.
翻译:评估真实风险和实证风险之间差异的一般化界限已经进行了广泛研究,但是,为了获得界限,目前的技术使用严格的假设,如统一界限或Lipschitz损失函数等。为避免这些假设,我们在本文件中采取了另一种办法:我们通过使用平均界限损失和平均界限梯度规范假设,放松统一界限假设。在放松之后,我们提出了一种新的一般化界限,利用日志-Soblev不平等的契约性。这些不平等在一般化约束上增加了另一个损失程度较高的规范术语,而一般化约束是模型复杂性的直观替代。我们把拟议的统一界限套在Bayesian深海网上,并从经验上分析这个新的损失程度规范术语对不同神经结构的影响。