Many real-world games contain parameters which can affect payoffs, action spaces, and information states. For fixed values of the parameters, the game can be solved using standard algorithms. However, in many settings agents must act without knowing the values of the parameters that will be encountered in advance. Often the decisions must be made by a human under time and resource constraints, and it is unrealistic to assume that a human can solve the game in real time. We present a new framework that enables human decision makers to make fast decisions without the aid of real-time solvers. We demonstrate applicability to a variety of situations including settings with multiple players and imperfect information.


翻译:许多真实世界游戏包含影响报酬、行动空间和信息状态的参数。 对于参数的固定值, 游戏可以使用标准算法解决。 但是, 在许多设置中, 代理商必须操作时不知道事先会遇到的参数的值。 通常决定必须由人在时间和资源限制下做出, 假设一个人可以实时解决游戏是不现实的。 我们提出了一个新的框架, 使人类决策者能够在没有实时解算器帮助的情况下快速做出决定。 我们展示了对多种情况的适用性, 包括多玩家和不完善信息的设置。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【图与几何深度学习】Graph and geometric deep learning,49页ppt
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
101+阅读 · 2020年5月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年9月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
8+阅读 · 2021年5月21日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
5+阅读 · 2019年9月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员