Liver cancer is one of the most common malignant diseases in the world. Segmentation and labeling of liver tumors and blood vessels in CT images can provide convenience for doctors in liver tumor diagnosis and surgical intervention. In the past decades, automatic CT segmentation methods based on deep learning have received widespread attention in the medical field. Many state-of-the-art segmentation algorithms appeared during this period. Yet, most of the existing segmentation methods only care about the local feature context and have a perception defect in the global relevance of medical images, which significantly affects the segmentation effect of liver tumors and blood vessels. We introduce a multi-scale feature context fusion network called TransFusionNet based on Transformer and SEBottleNet. This network can accurately detect and identify the details of the region of interest of the liver vessel, meanwhile it can improve the recognition of morphologic margins of liver tumors by exploiting the global information of CT images. Experiments show that TransFusionNet is better than the state-of-the-art method on both the public dataset LITS and 3Dircadb and our clinical dataset. Finally, we propose an automatic 3D reconstruction algorithm based on the trained model. The algorithm can complete the reconstruction quickly and accurately in 1 second.
翻译:肝癌是全世界最常见的恶性疾病之一。CT图像中肝肿瘤和血管的分类和标签可以方便医生进行肝肿瘤诊断和外科手术干预。在过去几十年里,基于深层学习的自动CT分割方法在医疗领域受到广泛关注。在此期间出现了许多最先进的分解算法。然而,大多数现有分解方法只关注当地特征背景,在医学图像的全球相关性方面有感知缺陷,严重影响肝肿瘤和血管的分解效应。我们引入了以变异器和SeBottleNet为基础的称为 TransFusionNet的多尺度特征环境聚变网络。这个网络可以准确地检测和确定肝脏容器感兴趣的区域的细节,同时通过利用CT图像的全球信息,可以提高肝脏肿瘤的血压边际认识。实验表明, TransFusionNet比公共数据集LITS和3Dircadb的状态方法更好。我们引入了基于变异器和3Dircadb的多级组合网络。这个网络可以准确地探测和确定肝脏容器感兴趣的区域的细节,同时通过利用CT图象学的全球信息来提高肝肿瘤的自动算算法和临床数据重建。最后提出一个完整的自动算法。我们根据3和临床算算法进行了3和临床重建。我们进行了3和临床算算。