Intelligent reflecting surface (IRS) is a promising solution to build a programmable wireless environment for future communication systems, in which the reflector elements steer the incident signal in fully customizable ways by passive beamforming. In this paper, an IRS-aided secure spatial modulation (SM) is proposed, where the IRS perform passive beamforming and information transfer simultaneously by adjusting the on-off states of the reflecting elements. We formulate an optimization problem to maximize the average secrecy rate (SR) by jointly optimizing the passive beamforming at IRS and the transmit power at transmitter under the consideration that the direct pathes channels from transmitter to receivers are obstructed by obstacles. As the expression of SR is complex, we derive a newly fitting expression (NASR) for the expression of traditional approximate SR (TASR), which has simpler closed-form and more convenient for subsequent optimization. Based on the above two fitting expressions, three beamforming methods, called maximizing NASR via successive convex approximation (Max-NASR-SCA), maximizing NASR via dual ascent (Max-NASR-DA) and maximizing TASR via semi-definite relaxation (Max-TASR-SDR) are proposed to improve the SR performance. Additionally, two transmit power design (TPD) methods are proposed based on the above two approximate SR expressions, called Max-NASR-TPD and Max-TASR-TPD. Simulation results show that the proposed Max-NASR-DA and Max-NASR-SCA IRS beamformers harvest substantial SR performance gains over Max-TASR-SDR. For TPD, the proposed Max-NASR-TPD performs better than Max-TASR-TPD. Particularly, the Max-NASR-TPD has a closed-form solution.


翻译:智能反射表面(IRS)是建设未来通信系统可编程无线环境的一个大有希望的解决办法,在这种环境中,反射元素通过被动波束成形,以完全自定义的方式引导事件信号;在本文中,提议采用IRS辅助的安全空间调制(SM),通过调整反射元素的上方状态,使IRS进行被动光束成形并同时进行信息传输;我们提出了一个优化问题,以最大限度地实现平均保密率(SR),办法是联合优化IRS的被动波束成型和发射器的传输能力,同时考虑到从发射机到接收机的直接通道受到障碍的阻碍。由于SR的表达方式复杂,我们为传统近似SRM(TASSR)的表达方式更简便、更便于随后的优化。基于上述两种组合的表达方式,即通过连续调压式(AS-NASS-TP)调频导电流、通过SIM-SR-TRA的双轨平压-S-S-S-SL-S-S-RDR-S-M-S-S-M-S-M-SAL-M-SAL-M-SL-M-M-M-M-M-M-MAL-S-S-MAL-S-MAD-S-S-S-S-S-MAD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-MA-MA-MAT-MA-MA-MA-MA-MA-MAT-MAT-MAT-MAT-MAT-MAT-MAT-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA

0
下载
关闭预览

相关内容

图像超分辨率(SR)是提高图像分辨率的一类重要的图像处理技术以及计算机视觉中的视频。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Arxiv
6+阅读 · 2018年7月29日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Top
微信扫码咨询专知VIP会员