Patch prioritization ranks candidate patches based on their likelihood of being correct. The fixing ingredients that are more likely to be the fix for a bug, share a high contextual similarity. A recent study shows that combining both syntactic and semantic similarity for capturing the contextual similarity, can do better in prioritizing patches. In this study, we evaluate the impact of combining the syntactic and semantic features on patch prioritization using the Insertion mutation operators. This study inspects the result of different combinations of syntactic and semantic features on patch prioritization. As a pilot study, the approach uses genealogical similarity to measure the semantic similarity and normalized longest common subsequence, normalized edit distance, cosine similarity, and Jaccard similarity index to capture the syntactic similarity. It also considers Anti-Pattern to filter out the incorrect plausible patches. The combination of both syntactic and semantic similarity can reduce the search space to a great extent. Also, the approach generates fixes for the bugs before the incorrect plausible one. We evaluate the techniques on the IntroClassJava benchmark using Insertion mutation operators and successfully generate fixes for 6 bugs before the incorrect plausible one. So, considering the previous study, the approach of combining syntactic and semantic similarity can able to solve a total number of 25 bugs from the benchmark, and to the best of our knowledge, it is the highest number of bugs solved than any other approach. The correctness of the generated fixes are further checked using the publicly available results of CapGen and thus for the generated fixes, the approach achieves a precision of 100%
翻译:补丁优先排序根据正确的可能性排列候选人的补丁 。 固定元素更可能是对错误的修复, 具有较高的背景相似性 。 最近的一项研究显示, 将词义和语义相似性相结合以捕捉背景相似性, 更有利于对补丁排序 。 在此研究中, 我们评估了将语义和语义特征结合在一起对使用 Interion 突变操作员的补丁优先排序的影响 。 本研究检查了补丁优先排序的合成和语义特征的不同组合结果 。 作为试点研究, 该方法使用基因相似性来测量语义相似性, 并规范了最长的子序列相似性、 常规编辑距离、 cosine相似性、 和 Jaccal 相似性指数来测量补丁相似性 。 我们还考虑将语义和语系相似性特征结合在一起, 将语义和语义相似性相似性合并起来可以大大减少搜索空间。 另外, 作为一种方法, 该方法在错误的精度之前, 将解性相似性相似性相似性相似性, 我们用StualCreal robilate 的计算方法来评估了一种方法, 。