Learning distributions of graphs can be used for automatic drug discovery, molecular design, complex network analysis, and much more. We present an improved framework for learning generative models of graphs based on the idea of deep state machines. To learn state transition decisions we use a set of graph and node embedding techniques as memory of the state machine. Our analysis is based on learning the distribution of random graph generators for which we provide statistical tests to determine which properties can be learned and how well the original distribution of graphs is represented. We show that the design of the state machine favors specific distributions. Models of graphs of size up to 150 vertices are learned. Code and parameters are publicly available to reproduce our results.
翻译:图表的学习分布可以用于自动药物发现、分子设计、复杂的网络分析等等。 我们为学习基于深层国家机器概念的图形的基因模型提供了一个更好的框架。 为学习状态过渡决定, 我们使用一套图形和节点嵌入技术作为国家机器的记忆。 我们的分析基于学习随机图形生成器的分布, 我们提供统计测试以确定哪些属性可以学习, 以及图形的原始分布有多好。 我们显示, 国家机器的设计有利于特定分布。 学习了150个顶点大小的图表模型。 代码和参数可以公开复制我们的结果 。