In the realm of image processing and computer vision (CV), machine learning (ML) architectures are widely applied. Convolutional neural networks (CNNs) solve a wide range of image processing issues and can solve image compression problem. Compression of images is necessary due to bandwidth and memory constraints. Helpful, redundant, and irrelevant information are three different forms of information found in images. This paper aims to survey recent techniques utilizing mostly lossy image compression using ML architectures including different auto-encoders (AEs) such as convolutional auto-encoders (CAEs), variational auto-encoders (VAEs), and AEs with hyper-prior models, recurrent neural networks (RNNs), CNNs, generative adversarial networks (GANs), principal component analysis (PCA) and fuzzy means clustering. We divide all of the algorithms into several groups based on architecture. We cover still image compression in this survey. Various discoveries for the researchers are emphasized and possible future directions for researchers. The open research problems such as out of memory (OOM), striped region distortion (SRD), aliasing, and compatibility of the frameworks with central processing unit (CPU) and graphics processing unit (GPU) simultaneously are explained. The majority of the publications in the compression domain surveyed are from the previous five years and use a variety of approaches.
翻译:在图像处理和计算机视觉(CV)领域,机器学习(ML)架构被广泛应用。 进化神经网络(CNN)解决了广泛的图像处理问题,并能够解决图像压缩问题。 由于带宽和记忆限制,图像压缩是必要的。 帮助性、冗余和不相关的信息是图像中发现的三个不同的信息形式。 本文旨在调查最近的技术,主要利用ML架构,包括不同的自动电解器(AEs)等损失性图像压缩结构来调查最近的技术,这些架构包括不同的自动电解器(AEs),变式自动电解码器(VAEs)和具有超原始模型的AE(AEs),经常性神经网络(RNNS),CNN(CNS),配制对抗网络(GANs),主要组件分析(PCA)和模糊手段组合。 我们将所有算法都分为几个基于结构的组。 我们在这次调查中仍涵盖图像压缩。 研究人员的各种发现都得到了强调,未来可能有不同的方向。 公开研究问题,如记忆之外(OOM), 分解的磁区域处理和磁化单位(SRD)的平整整版格式框架(C)是前的中央格式处理(SRD)的多数格式化框架的兼容性。