Safety certification of data-driven control techniques remains a major open problem. This work investigates backward reachability as a framework for providing collision avoidance guarantees for systems controlled by neural network (NN) policies. Because NNs are typically not invertible, existing methods conservatively assume a domain over which to relax the NN, which causes loose over-approximations of the set of states that could lead the system into the obstacle (i.e., backprojection (BP) sets). To address this issue, we introduce DRIP, an algorithm with a refinement loop on the relaxation domain, which substantially tightens the BP set bounds. Furthermore, we introduce a formulation that enables directly obtaining closed-form representations of polytopes to bound the BP sets tighter than prior work, which required solving linear programs and using hyper-rectangles. Furthermore, this work extends the NN relaxation algorithm to handle polytope domains, which further tightens the bounds on BP sets. DRIP is demonstrated in numerical experiments on control systems, including a ground robot controlled by a learned NN obstacle avoidance policy.
翻译:数据驱动控制技术的安全认证仍然是一个重大的未决问题。 这项工作调查了向后可达性,作为向神经网络控制系统提供避免碰撞保障的框架。 由于NN通常不是不可忽略的,现有方法保守地假定了一个可以放松NN的域,造成一系列国家过于过分适应,从而可能导致系统进入障碍(即回射(BP)系统)。为了解决这个问题,我们引入了DRIP,这是一种在放松域上进行精细循环的算法,大大加强了BP设定的界限。此外,我们引入了一种配方,能够直接获得多边顶部的封闭式显示,使其比以前的工作更加严格,这就要求解决线性程序,使用超纠结器。此外,这项工作将NN的放松算法扩大到处理多管域,从而进一步收紧BP设置的界限。 DRIP在控制系统的数字实验中得到了证明,包括由有知识的NN的障碍避免政策控制的地面机器人。