Reasoning in a temporal knowledge graph (TKG) is a critical task for information retrieval and semantic search. It is particularly challenging when the TKG is updated frequently. The model has to adapt to changes in the TKG for efficient training and inference while preserving its performance on historical knowledge. Recent work approaches TKG completion (TKGC) by augmenting the encoder-decoder framework with a time-aware encoding function. However, naively fine-tuning the model at every time step using these methods does not address the problems of 1) catastrophic forgetting, 2) the model's inability to identify the change of facts (e.g., the change of the political affiliation and end of a marriage), and 3) the lack of training efficiency. To address these challenges, we present the Time-aware Incremental Embedding (TIE) framework, which combines TKG representation learning, experience replay, and temporal regularization. We introduce a set of metrics that characterizes the intransigence of the model and propose a constraint that associates the deleted facts with negative labels. Experimental results on Wikidata12k and YAGO11k datasets demonstrate that the proposed TIE framework reduces training time by about ten times and improves on the proposed metrics compared to vanilla full-batch training. It comes without a significant loss in performance for any traditional measures. Extensive ablation studies reveal performance trade-offs among different evaluation metrics, which is essential for decision-making around real-world TKG applications.


翻译:时间知识图(TKG)是信息检索和语义搜索的关键任务。当TKG经常更新时,该模型尤其具有挑战性。该模型必须适应TKG的变化,以便进行有效的培训和推断,同时保留历史知识方面的绩效。最近的工作接近于完成TKG, 方法是加强编码器解码器框架,同时使用时间识别编码功能。然而,在使用这些方法的每一个步骤上对模型进行天真的微调,并不能解决以下问题:(1) 灾难性的忘记,(2) 该模型无法查明事实的变化(例如,政治归属和婚姻结束的改变),以及(3) 缺乏培训效率。为了应对这些挑战,我们介绍TKGG的“时间认知递增嵌入(TIE)框架”,它结合TKG的学习、经验重现和时间规范功能。我们引入了一系列衡量模型的顽固性特征,并提出了将删除的事实与负面标签联系起来的制约。Wikdata12k和YAGO11k的实验性结果, 以及培训效率的缺乏。为了应对这些挑战,我们提议的TAVI的完整数据显示,拟议的全面业绩,它通过拟议的“标准”将减少任何关于真实性数据库中的任何数据记录。它将改进。通过拟议的“矩阵”的模拟”的“标准,通过拟议的“透明”的“标准”的“业绩”的模拟”将改进一个拟议的“标准,将使得任何“标准”的“标准”的“标准”的“业绩”的“标准”的“业绩”的“标准”的“业绩”将改进到“标准”的“标准”的完整”的完整”的“标准”的“标准”的“业绩”的“标准”的“业绩”的“在“业绩”的“在“标准”的”的“在“在“在“在”的”的”中,通过”的”的”的”中,它”的”的“在“整个”的”中,通过”的”的”的“在“任何“要求中,通过”的”中,通过“任何“总的”的”的”的”的”的“任何“总的”的“总的”的”的“要求的”的”的“要求”中,将减少一个“任何“总的”的”的“业绩”的”的”的”的”的“

0
下载
关闭预览

相关内容

17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
论文浅尝 | Open world Knowledge Graph Completion
开放知识图谱
19+阅读 · 2018年1月30日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
4+阅读 · 2019年2月8日
VIP会员
相关VIP内容
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
Top
微信扫码咨询专知VIP会员