We propose a novel numerical method for high dimensional Hamilton--Jacobi--Bellman (HJB) type elliptic partial differential equations (PDEs). The HJB PDEs, reformulated as optimal control problems, are tackled by the actor-critic framework inspired by reinforcement learning, based on neural network parametrization of the value and control functions. Within the actor-critic framework, we employ a policy gradient approach to improve the control, while for the value function, we derive a variance reduced least square temporal difference method (VR-LSTD) using stochastic calculus. To numerically discretize the stochastic control problem, we employ an adaptive stepsize scheme to improve the accuracy near the domain boundary. Numerical examples up to $20$ spatial dimensions including the linear quadratic regulators, the stochastic Van der Pol oscillators, and the diffusive Eikonal equations are presented to validate the effectiveness of our proposed method.


翻译:我们为高维的汉密尔顿-Jacobi-Bellman(HJB)类椭圆部分差异方程式(PDEs)提出了一个新的数字方法。HJB PDE(HJB)是作为最佳控制问题重新拟订的,由基于数值和控制功能神经网络分化的强化学习启发的行为者-critic 框架处理。在行为者-critic 框架内,我们采用政策梯度方法改进控制,而对于价值函数,我们使用随机微分微分微分法(VR-LSTD)得出差异最小时间差异法(VR-LSTD)。为了从数字上将随机控制问题分解,我们采用了一个适应性步骤计划,以提高区域边界附近的精确度。数字实例高达20美元,包括线性二次调节器、沙沙变范德尔波尔振动器和diffusive Eikonal等方程式,以验证我们拟议方法的有效性。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
45+阅读 · 2020年10月31日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员