The stack number of a directed acyclic graph $G$ is the minimum $k$ for which there is a topological ordering of $G$ and a $k$-coloring of the edges such that no two edges of the same color cross, i.e., have alternating endpoints along the topological ordering. We prove that the stack number of directed acyclic outerplanar graphs is bounded by a constant, which gives a positive answer to a conjecture by Heath, Pemmaraju and Trenk [SIAM J. Computing, 1999]. As an immediate consequence, this shows that all upward outerplanar graphs have constant stack number, answering a question by Bhore et al. [Eur. J. Comb., 2023] and thereby making significant progress towards the problem for general upward planar graphs originating from Nowakowski and Parker [Order, 1989]. As our main tool we develop the novel technique of directed $H$-partitions, which might be of independent interest. We complement the bounded stack number for directed acyclic outerplanar graphs by constructing a family of directed acyclic 2-trees that have unbounded stack number, thereby refuting a conjecture by N\"ollenburg and Pupyrev [GD 2023].


翻译:有向无环图 $G$ 的栈数是指满足以下条件的最小整数 $k$:存在 $G$ 的一个拓扑排序以及对边的一种 $k$ 着色方案,使得没有两条同色边交叉,即它们的端点在拓扑排序中交替出现。我们证明了有向无环外平面图的栈数存在常数上界,这为 Heath、Pemmaraju 和 Trenk [SIAM J. Computing, 1999] 的猜想给出了肯定的回答。作为一个直接推论,这表明所有向上外平面图都具有常数栈数,从而回答了 Bhore 等人 [Eur. J. Comb., 2023] 提出的问题,并对源自 Nowakowski 和 Parker [Order, 1989] 的一般向上平面图问题取得了重要进展。我们开发了新的技术工具——有向 $H$ 划分,这可能具有独立的研究意义。我们通过构造一族栈数无界的有向无环 2-树,补充说明了有向无环外平面图栈数的有界性,从而否定了 Nöllenburg 和 Pupyrev [GD 2023] 的猜想。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员