This paper presents a new technique for disturbing the algebraic structure of linear codes in code-based cryptography. Specifically, we introduce the so-called semilinear transformations in coding theory and then creatively apply them to the construction of code-based cryptosystems. Note that $\mathbb{F}_{q^m}$ can be viewed as an $\mathbb{F}_q$-linear space of dimension $m$, a semilinear transformation $\varphi$ is therefore defined as an $\mathbb{F}_q$-linear automorphism of $\mathbb{F}_{q^m}$. Then we impose this transformation to a linear code $\mathcal{C}$ over $\mathbb{F}_{q^m}$. It is clear that $\varphi(\mathcal{C})$ forms an $\mathbb{F}_q$-linear space, but generally does not preserve the $\mathbb{F}_{q^m}$-linearity any longer. Inspired by this observation, a new technique for masking the structure of linear codes is developed in this paper. Meanwhile, we endow the underlying Gabidulin code with the so-called partial cyclic structure to reduce the public-key size. Compared to some other code-based cryptosystems, our proposal admits a much more compact representation of public keys. For instance, 2592 bytes are enough to achieve the security of 256 bits, almost 403 times smaller than that of Classic McEliece entering the third round of the NIST PQC project.
翻译:本文展示了一种在代码加密中干扰线性代码代数结构的新技术。 具体地说, 我们引入了所谓的半线性转换, 并在编码理论中引入了所谓的半线性转换, 然后创造性地将其应用到代码加密系统的构建中。 注意$\ mathbb{ F\\\ q ⁇ m} $可以被看成是一个 $mathbb{ F\ qq$- 线性空间的维度 $m, 因此, 一个半线性转换 $\ mathb{ F\ q$- 线性空间被定义为 $\ mathb{ F\ q} 。 具体地说, $\ most\ mindlineallinealalal tystems 。 $\ mathb{ F\ q} q ⁇ m} 。 很显然, $\\ mostlinealphrational falblational- committeal comm a comm commax commax comm comm commission comm comm comm commission commission comm 。 comm comm 。 rodududududududududududule comm comm comm comm comm comm comm comm comm comm comm comm commational comm commation comm comm comm rocle 。 。 。 。 comm comm comm rocil comm comm comm rocil rocil comm rocil rocil rocil rocil comm rocil rocil comm rocil rocil rocil rocil rocal ro ro ro ro ro ro ro ro ro 。 。 ro ro ro ro ro ro ro ro) 。 rocil rocal rocil ro ro ro ro ro ro