Conventionally, random forests are built from "greedy" decision trees which each consider only one split at a time during their construction. The sub-optimality of greedy implementation has been well-known, yet mainstream adoption of more sophisticated tree building algorithms has been lacking. We examine under what circumstances an implementation of less greedy decision trees actually yields outperformance. To this end, a "stepwise lookahead" variation of the random forest algorithm is presented for its ability to better uncover binary feature interdependencies. In contrast to the greedy approach, the decision trees included in this random forest algorithm, each simultaneously consider three split nodes in tiers of depth two. It is demonstrated on synthetic data and financial price time series that the lookahead version significantly outperforms the greedy one when (a) certain non-linear relationships between feature-pairs are present and (b) if the signal-to-noise ratio is particularly low. A long-short trading strategy for copper futures is then backtested by training both greedy and stepwise lookahead random forests to predict the signs of daily price returns. The resulting superior performance of the lookahead algorithm is at least partially explained by the presence of "XOR-like" relationships between long-term and short-term technical indicators. More generally, across all examined datasets, when no such relationships between features are present, performance across random forests is similar. Given its enhanced ability to understand the feature-interdependencies present in complex systems, this lookahead variation is a useful extension to the toolkit of data scientists, in particular for financial machine learning, where conditions (a) and (b) are typically met.


翻译:在《公约》中,随机森林是从“贪婪”决策树中建立的,每个科学家在建设过程中每次只考虑一个分解。贪婪执行的次优性是众所周知的,但缺乏更精密的树木建筑算法。我们检查在何种情况下,较不贪婪决策树的实施实际上会产生超效。为此,随机森林算法的“逐步外观”变异是因为它能够更好地发现二进制特征的相互依存性。与贪婪的方法相反,这种随机森林算法中包含的决策树同时考虑深度2级的三个分解节点。在合成数据和金融价格时间序列中显示,当(a) 存在某些地貌与树皮之间的非线性关系时, 时, 随机森林算法的“ 渐渐变”, 然后通过训练贪婪和直观森林的随机性交易策略, 来预测日常价格回报的信号。 由此得出的直观性能比贪贪婪的模型, 通常以更优的性能来解释 。

0
下载
关闭预览

相关内容

随机森林 指的是利用多棵树对样本进行训练并预测的一种分类器。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
15+阅读 · 2021年5月21日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月19日
【实用书】数据科学基础,484页pdf,Foundations of Data Science
专知会员服务
118+阅读 · 2020年5月28日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年5月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员