Machine Learning has seen tremendous growth recently, which has led to larger adoption of ML systems for educational assessments, credit risk, healthcare, employment, criminal justice, to name a few. The trustworthiness of ML and NLP systems is a crucial aspect and requires a guarantee that the decisions they make are fair and robust. Aligned with this, we propose a framework GYC, to generate a set of counterfactual text samples, which are crucial for testing these ML systems. Our main contributions include a) We introduce GYC, a framework to generate counterfactual samples such that the generation is plausible, diverse, goal-oriented, and effective, b) We generate counterfactual samples, that can direct the generation towards a corresponding condition such as named-entity tag, semantic role label, or sentiment. Our experimental results on various domains show that GYC generates counterfactual text samples exhibiting the above four properties. GYC generates counterfactuals that can act as test cases to evaluate a model and any text debiasing algorithm.
翻译:最近,机器学习出现了巨大的增长,导致在教育评估、信用风险、保健、就业、刑事司法等方面更多地采用ML系统,从而导致更多地采用ML系统,用于教育评估、信用风险、保健、就业、刑事司法等等。ML和NLP系统的信誉是一个关键方面,需要保证它们所作的决定是公平和稳健的。与此相符合,我们提议了一个GYC框架,以生成一套反事实文本样本,这些样本对于测试这些ML系统至关重要。我们的主要贡献包括a)我们引入了GYC,这是一个生成反事实样本的框架,这样一代人就似是可信、多样、面向目标和有效的,b)我们生成反事实样本,能够引导下一代人走向一个相应的条件,如命名实体标签、语义角色标签或情绪。我们在各个领域的实验结果表明,GYC生成了反映以上四个属性的反事实文本样本。GYC产生了反事实,可以作为测试模型和任何文字贬损算算法的测试案例。