Regression-based methods have recently shown promising results in reconstructing human meshes from monocular images. By directly mapping raw pixels to model parameters, these methods can produce parametric models in a feed-forward manner via neural networks. However, minor deviation in parameters may lead to noticeable misalignment between the estimated meshes and image evidences. To address this issue, we propose a Pyramidal Mesh Alignment Feedback (PyMAF) loop to leverage a feature pyramid and rectify the predicted parameters explicitly based on the mesh-image alignment status in our deep regressor. In PyMAF, given the currently predicted parameters, mesh-aligned evidences will be extracted from finer-resolution features accordingly and fed back for parameter rectification. To reduce noise and enhance the reliability of these evidences, an auxiliary pixel-wise supervision is imposed on the feature encoder, which provides mesh-image correspondence guidance for our network to preserve the most related information in spatial features. The efficacy of our approach is validated on several benchmarks, including Human3.6M, 3DPW, LSP, and COCO, where experimental results show that our approach consistently improves the mesh-image alignment of the reconstruction. The project page with code and video results can be found at https://hongwenzhang.github.io/pymaf.
翻译:借助于直接绘制原始像素到模型参数,这些方法能够通过神经网络以向前推进的方式生成参数模型;然而,参数的细微偏差可能导致估计的模具与图像证据之间明显不协调;为解决这一问题,我们提议采用一个Pyramidal Mesh 匹配反馈(PyMAF)环路,以利用一个功能金字塔,并纠正根据我们深层累进器的网状图像调整状态明确预测的参数。在PyMAF中,根据目前预测的参数,对网状证据进行校准,将相应地从精细分辨率特征中提取,并将网状证据反馈,用于参数校正。为减少噪音,提高这些证据的可靠性,对地标进行辅助性平分流监测,为我们的网络提供网状图像图像对应指导,以保存空间特征中最相关的信息。我们的方法的功效在几个基准上得到验证,包括人文3.6M、3DPW、LSP和CO,将网状校准证据提取回路标,用于参数校准参数校正。为了不断显示我们的Mycodes/hang的图像校正结果,可以不断显示我们的图像校正。