We consider two fundamental and related issues currently faced by Artificial Intelligence (AI) development: the lack of ethics and interpretability of AI decisions. Can interpretable AI decisions help to address ethics in AI? Using a randomized study, we experimentally show that the empirical and liberal turn of the production of explanations tends to select AI explanations with a low denunciatory power. Under certain conditions, interpretability tools are therefore not means but, paradoxically, obstacles to the production of ethical AI since they can give the illusion of being sensitive to ethical incidents. We also show that the denunciatory power of AI explanations is highly dependent on the context in which the explanation takes place, such as the gender or education level of the person to whom the explication is intended for. AI ethics tools are therefore sometimes too flexible and self-regulation through the liberal production of explanations do not seem to be enough to address ethical issues. We then propose two scenarios for the future development of ethical AI: more external regulation or more liberalization of AI explanations. These two opposite paths will play a major role on the future development of ethical AI.


翻译:我们考虑了人工智能(AI)发展目前面临的两个基本和相关问题:缺乏伦理道德和大赦国际决定的解释性。可以解释的大赦国际决定有助于在AI中处理伦理问题?我们通过随机研究,实验性地表明,从经验上和自由的解释性转变倾向于以较低的发音能力选择AI解释性解释性解释性解释性解释性解释性解释性解释性工具,因此,在某些情况下,解释性工具不是手段,反而是产生伦理AI的障碍性解释性解释性分析的假象,因为这些工具会使道德事件变得敏感。我们还表明,大赦国际解释性解释的发音性能力在很大程度上取决于解释发生的背景,例如解释对象的性别或教育水平。因此,大赦国际的伦理性工具有时过于灵活和自律,通过自由的解释性解释性解释性解释性工具似乎不足以解决伦理问题。然后,我们提出了今后发展伦理AI的两种设想:更多的外部监管性或对AI解释性解释性解释性解释性更大程度的自由化。这两种相反的方法将在道德AI的未来发展中起重要作用。

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
19+阅读 · 2021年6月15日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员