The interest in quantum computing is growing, and with it, the importance of software platforms to develop quantum programs. Ensuring the correctness of such platforms is important, and it requires a thorough understanding of the bugs they typically suffer from. To address this need, this paper presents the first in-depth study of bugs in quantum computing platforms. We gather and inspect a set of 223 real-world bugs from 18 open-source quantum computing platforms. Our study shows that a significant fraction of these bugs (39.9%) are quantum-specific, calling for dedicated approaches to prevent and find them. The bugs are spread across various components, but quantum-specific bugs occur particularly often in components that represent, compile, and optimize quantum programming abstractions. Many quantum-specific bugs manifest through unexpected outputs, rather than more obvious signs of misbehavior, such as crashes. Finally, we present a hierarchy of recurrent bug patterns, including ten novel, quantum-specific patterns. Our findings not only show the importance and prevalence bugs in quantum computing platforms, but they help developers to avoid common mistakes and tool builders to tackle the challenge of preventing, finding, and fixing these bugs.


翻译:量子计算的兴趣正在增长, 随着它, 软件平台对于开发量子程序的重要性正在增长。 确保这些平台的正确性非常重要, 它要求彻底理解它们通常遭受的错误。 为解决这一需要, 本文展示了量子计算平台中的错误的首次深入研究。 我们从18个公开源码量子计算平台收集和检查了一套223个真实世界错误。 我们的研究显示, 这些错误中有很大一部分( 39.9 % ) 是量子特有的, 需要专门的方法来预防和找到它们。 这些错误分散在不同组件中, 但是量子特定错误特别经常出现在代表、 汇编和优化量子程序提取的部件中。 许多量子特定错误通过意外产出而不是更明显的误差迹象表现出来, 比如碰撞。 最后, 我们展示了经常的错误模式的等级, 包括10个新的量子量子计算模式。 我们的发现不仅显示了量子计算平台中的重要性和流行性错误, 而且还帮助开发者避免常见的错误和工具制造者来应对预防、 和发现这些错误的挑战。

0
下载
关闭预览

相关内容

【CVPR2021】反事实的零次和开集识别
专知会员服务
25+阅读 · 2021年5月7日
专知会员服务
59+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
230+阅读 · 2019年10月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年1月9日
Arxiv
0+阅读 · 2022年1月7日
Arxiv
24+阅读 · 2020年3月11日
VIP会员
相关VIP内容
【CVPR2021】反事实的零次和开集识别
专知会员服务
25+阅读 · 2021年5月7日
专知会员服务
59+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
230+阅读 · 2019年10月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员