We study nonlinear hyperbolic conservation laws with non-convex flux in one space dimension and, for a broad class of numerical methods based on summation by parts operators, we compute numerically the kinetic functions associated with each scheme. As established by LeFloch and collaborators, kinetic functions (for continuous or discrete models) uniquely characterize the macro-scale dynamics of small-scale dependent, undercompressive, nonclassical shock waves. We show here that various entropy-dissipative numerical schemes can yield nonclassical solutions containing classical shocks, including Fourier methods with (super-) spectral viscosity, finite difference schemes with artificial dissipation, discontinuous Galerkin schemes with or without modal filtering, and TeCNO schemes. We demonstrate numerically that entropy stability does not imply uniqueness of the limiting numerical solutions for scalar conservation laws in one space dimension, and we compute the associated kinetic functions in order to distinguish between these schemes. In addition, we design entropy-dissipative schemes for the Keyfitz-Kranzer system whose solutions are measures with delta shocks. This system illustrates the fact that entropy stability does not imply boundedness under grid refinement.
翻译:我们在一个空间维度上研究非阴离层通量的非线性双曲保护法,并且为了根据部件操作者加起来的广义数字方法,我们计算每个图案的相关动能功能。正如LeFloch和协作者所确定的那样,动能功能(连续或离散模型)的独特特征是小型依赖性低压、非古典冲击波的宏观动态。我们在这里显示,各种微粒分异数字方案可产生包含古老冲击的非古典化解决方案,包括具有(超)光谱粘附性的Fourier方法、人为消散的有限差异方案、有或没有模式过滤的不连续加列金方案以及TeCNO方案。我们从数字上表明,在一个空间维度上,恒定的动能稳定性并不意味着限制的标定数字解决方案的独特性,我们为了区分这些系统,我们为Keyfitz-Kranzer系统设计了带有(超)光谱粘度、有人为消散的定差异方案、不连续加列金方案以及TeCNO方案。我们从数字上表明,在稳定度上显示稳定度的系统是三角震测。