A graph $G$ is a PCG if there exists an edge-weighted tree such that each leaf of the tree is a vertex of the graph, and there is an edge $\{ x, y \}$ in $G$ if and only if the weight of the path in the tree connecting $x$ and $y$ lies within a given interval. PCGs have different applications in phylogenetics and have been lately generalized to multi-interval-PCGs. In this paper we define two new generalizations of the PCG class, namely k-OR-PCGs and k-AND-PCGs, that are the classes of graphs that can be expressed as union and intersection, respectively, of $k$ PCGs. The problems we consider can be also described in terms of the \emph{covering number} and the \emph{intersection dimension} of a graph with respect to the PCG class. In this paper we investigate how the classes of PCG, multi-interval-PCG, OR-PCG and AND-PCG are related to each other and to other graph classes known in the literature. In particular, we provide upper bounds on the minimum $k$ for which an arbitrary graph $G$ belongs to k-interval-PCG, k-OR-PCG and k-AND-PCG classes. Furthermore, for particular graph classes we improve these general bounds. Moreover, we show that, for every integer $k$, there exists a bipartite graph that is not in the k-interval-PCG class, proving that there is no finite $k$ for which the k-interval-PCG class contains all the graphs. Finally, we show that there exist graphs that are not in 2-AND-PCG.


翻译:图形 $G$ 是一个PCG 。 如果存在一个边缘加权树, 树的每片叶都是图形的顶端, 并且只有连接 $x$ 和 $y$ 的树上路径重量处于给定间隔之内, 图形 $G$就是 PCG 。 PCG 在血清学中有着不同的应用, 最近被广泛化为多跨方PCG 。 在本文中, 我们定义了PCG 类的两个新的概观, 即 k- OR- PCG 和 k- AND- PCG, 它们是可以分别表示为 美元 PCG 和 美元 美元 的组合和交叉的图表类别。 我们认为的问题也可以用 emph{ 覆盖数字} 和 emph{ intercrection 维度来描述。 在本文中, PCG- 和 kval G- 的 类之间, kval- 和 PC- PC 和 PCG 等的类别是如何相互关联的 。 在每类中, 向您提供 le- le- k- g- sal- col- g- g- 提供我们所知道- sal- sal- sal- c- 的, 的, 和 k- sal- 。

0
下载
关闭预览

相关内容

图神经网络综述
专知会员服务
199+阅读 · 2022年1月9日
专知会员服务
17+阅读 · 2021年8月4日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
7+阅读 · 2018年8月28日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月21日
Arxiv
0+阅读 · 2022年2月21日
Arxiv
7+阅读 · 2019年10月6日
Arxiv
5+阅读 · 2019年6月5日
VIP会员
相关资讯
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
7+阅读 · 2018年8月28日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员