In many real-world situations, there are constraints on the ways in which a physical system can be manipulated. We investigate the entropy production (EP) and extractable work involved in bringing a system from some initial distribution $p$ to some final distribution $p'$, given that the set of master equations available to the driving protocol obeys some constraints. We first derive general bounds on EP and extractable work, as well as a decomposition of the nonequilibrium free energy into an "accessible free energy" (which can be extracted as work, given a set of constraints) and "inaccessible free energy" (which must be dissipated as EP). In a similar vein, we consider the thermodynamics of information in the presence of constraints, and decompose the information acquired in a measurement into "accessible" and "inaccessible" components. This decomposition allows us to consider the thermodynamic efficiency of different measurements of the same system, given a set of constraints. We use our framework to analyze protocols subject to symmetry, modularity, and coarse-grained constraints, and consider various examples including the Szilard box, the 2D Ising model, and a multi-particle flashing ratchet.
翻译:在许多现实世界的情况中,物理系统可以操纵的方式存在限制。我们调查了将一个系统从最初的发行量到最后的发行量到一定的销售量所涉及的生产(EP)和可抽取的工作,因为驱动协议现有的一套主方程式符合某些限制。我们首先从EP和可提取的工作上得出一般的界限,并将无平衡的自由能源分解成一种“可获取的免费能源”(根据一系列限制,可抽取为工作)和“可获取的自由能源”(必须作为EP消散)。同样,我们考虑在存在限制的情况下信息的热动力学,并将测量中获得的信息分解成“可获取性”和“不可获取性”的组成部分。这种分解使我们能够考虑到同一系统不同测量的热力效率,同时考虑到一系列限制。我们使用我们的框架来分析协议,其主题为对称性、模块性、可获取性、可获取的免费能源”(必须作为EPEP)和“不可获取性自由能源” 。在类似地,我们考虑信息在存在限制的情况下的热动力学动力学,并将测量中所获得的信息转换成“可获取性,并考虑各种例子,包括“可获取的“可获取的”2号箱。