The choice of token vocabulary affects the performance of machine translation. This paper aims to figure out what is a good vocabulary and whether one can find the optimal vocabulary without trial training. To answer these questions, we first provide an alternative understanding of the role of vocabulary from the perspective of information theory. Motivated by this, we formulate the quest of vocabularization -- finding the best token dictionary with a proper size -- as an optimal transport (OT) problem. We propose VOLT, a simple and efficient solution without trial training. Empirical results show that VOLT outperforms widely-used vocabularies in diverse scenarios, including WMT-14 English-German and TED's 52 translation directions. For example, VOLT achieves almost 70% vocabulary size reduction and 0.5 BLEU gain on English-German translation. Also, compared to BPE-search, VOLT reduces the search time from 384 GPU hours to 30 GPU hours on English-German translation. Codes are available at https://github.com/Jingjing-NLP/VOLT .


翻译:选择象征性词汇会影响机器翻译的性能。 本文旨在找出什么是好的词汇, 以及人们能否在没有试用训练的情况下找到最佳词汇。 为了解答这些问题, 我们首先从信息理论的角度对词汇的作用提供另一种理解。 我们受此驱动, 将寻找Vocabulalization -- -- 找到具有适当尺寸的最佳象征性字典 -- -- 作为一种最佳运输( OT) 问题。 我们建议VOLT, 一种不经过试用培训的简单而有效的解决方案。 经验性结果显示, VOLT 超越了不同情景中广泛使用的词汇, 包括 WMT-14 英文- 德文和TED 52 的翻译方向。 例如, VOLT 实现了几乎70%的词汇缩放规模和英语- 德文翻译的0.5 BLEU 增益。 此外, 与 BPE- 搜索相比, VOLT 将搜索时间从384 GPU小时减少到英语- 德语翻译的30 GPU小时。 代码可在 https://github. com/ Jingjing- NLP/ VOLT 。

0
下载
关闭预览

相关内容

【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
36+阅读 · 2020年3月3日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
129+阅读 · 2019年11月25日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
147+阅读 · 2019年10月27日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
已删除
将门创投
7+阅读 · 2018年4月18日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
12+阅读 · 2015年7月1日
Arxiv
3+阅读 · 2018年6月1日
VIP会员
相关VIP内容
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
已删除
将门创投
7+阅读 · 2018年4月18日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
12+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员