Representing a board game and its positions by text-based notation enables the possibility of NLP applications. Language models, can help gain insight into a variety of interesting problems such as unsupervised learning rules of a game, detecting player behavior patterns, player attribution, and ultimately learning the game to beat state of the art. In this study, we applied BERT models, first to the simple Nim game to analyze its performance in the presence of noise in a setup of a few-shot learning architecture. We analyzed the model performance via three virtual players, namely Nim Guru, Random player, and Q-learner. In the second part, we applied the game learning language model to the chess game, and a large set of grandmaster games with exhaustive encyclopedia openings. Finally, we have shown that model practically learns the rules of the chess game and can survive games against Stockfish at a category-A rating level.
翻译:以基于文本的标记代表棋盘游戏及其位置, 使得 NLP 应用程序成为可能。 语言模型可以帮助深入了解各种有趣的问题, 比如游戏不受监督的学习规则、 检测玩家行为模式、 玩家归属, 并最终学习游戏以击败艺术状态。 在这项研究中, 我们应用了 BERT 模型, 首先是简单的 Nim 游戏, 以分析它在一个微小的学习结构设置中出现噪音时的表现。 我们通过三个虚拟玩家, 即 Nim Guru、 随机玩家 和 Q- Learner, 分析了模型的性能 。 在第二部分, 我们用游戏学习语言模型来玩棋游戏, 以及一大堆有详尽百科全书开场的巨型游戏 。 最后, 我们证明模型实际上学习了国际象棋游戏的规则, 并且可以在A 类评级级别上与 Stockfish 的游戏生存下来 。