The 5G network connecting billions of Internet-of-Things (IoT) devices will make it possible to harvest an enormous amount of real-time mobile data. Furthermore, the 5G virtualization architecture will enable cloud computing at the (network) edge. The availability of both rich data and computation power at the edge has motivated Internet companies to deploy artificial intelligence (AI) there, creating the hot area of edge-AI. Edge learning, the theme of this project, concerns training edge-AI models, which endow on IoT devices intelligence for responding to real-time events. However, the transmission of high-dimensional data from many edge devices to servers can result in excessive communication latency, creating a bottleneck for edge learning. Traditional wireless techniques deigned for only radio access are ineffective in tackling the challenge. Attempts to overcome the communication bottleneck has led to the development of a new class of techniques for intelligent radio resource management (RRM), called data-importance aware RRM. Their designs feature the interplay of active machine learning and wireless communication. Specifically, the metrics that measure data importance in active learning (e.g., classification uncertainty and data diversity) are applied to RRM for efficient acquisition of distributed data in wireless networks to train AI models at servers. This article aims at providing an introduction to the emerging area of importance-aware RRM. To this end, we will introduce the design principles, survey recent advancements in the area, discuss some design examples, and suggest some promising research opportunities.


翻译:连接数十亿个互联网电话(IoT)设备的5G网络连接了数十亿个互联网电话(IoT)设备,将有可能收获大量实时移动数据。此外,5G虚拟化架构将使得云层在(网络)边缘进行计算。在边缘提供丰富的数据和计算能力,促使互联网公司在那里部署人工智能(AI),创造了边缘-AI的热区。Edge学习是这个项目的主题,它涉及培训边缘-AI模型,这种模型在IoT设备情报上为实时事件作出反应。然而,从许多边端设备向服务器传输高维数据可能导致过度的通信延缓度,为边缘学习创造瓶颈。传统的无线技术在应对挑战方面是无效的。克服通信瓶颈的努力导致开发了智能无线电资源管理的新型技术(RRM),称为了解RRMRM的数据的吸引力。它们的设计特点是积极机器学习和无线通信的相互作用。具体地说,测量数据在积极学习中的重要性的一些指标(例如,在RMRM设计领域提供无线数据设计设计中的最新数据库的不确定性和数据多样性)。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
12+阅读 · 2019年3月14日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员