We explore a new class of diffusion models based on the transformer architecture. We train latent diffusion models of images, replacing the commonly-used U-Net backbone with a transformer that operates on latent patches. We analyze the scalability of our Diffusion Transformers (DiTs) through the lens of forward pass complexity as measured by Gflops. We find that DiTs with higher Gflops -- through increased transformer depth/width or increased number of input tokens -- consistently have lower FID. In addition to possessing good scalability properties, our largest DiT-XL/2 models outperform all prior diffusion models on the class-conditional ImageNet 512x512 and 256x256 benchmarks, achieving a state-of-the-art FID of 2.27 on the latter.
翻译:我们探索基于变压器结构的新型扩散模型。 我们训练了图像的潜在扩散模型, 将常用的U- Net主干网替换成在潜伏补丁上运行的变压器。 我们通过Gflops测量的远端传变复杂度透镜分析我们的变射变异器的可缩放性。 我们发现, Gflops 高的二二T公司 -- -- 通过提高变压器深度/宽度或增加输入符号的数量 -- -- 始终拥有较低的FID。 除了拥有良好的可缩放性外,我们最大的二T- XL/2 模型比级条件图像网 512x512 和 256x256 基准上的所有先前扩散模型都更优异, 在后者上实现了2. 27 的最新FID。