We present an extension of Monte Carlo Tree Search (MCTS) that strongly increases its efficiency for trees with asymmetry and/or loops. Asymmetric termination of search trees introduces a type of uncertainty for which the standard upper confidence bound (UCB) formula does not account. Our first algorithm (MCTS-T), which assumes a non-stochastic environment, backs-up tree structure uncertainty and leverages it for exploration in a modified UCB formula. Results show vastly improved efficiency in a well-known asymmetric domain in which MCTS performs arbitrarily bad. Next, we connect the ideas about asymmetric termination to the presence of loops in the tree, where the same state appears multiple times in a single trace. An extension to our algorithm (MCTS-T+), which in addition to non-stochasticity assumes full state observability, further increases search efficiency for domains with loops as well. Benchmark testing on a set of OpenAI Gym and Atari 2600 games indicates that our algorithms always perform better than or at least equivalent to standard MCTS, and could be first-choice tree search algorithms for non-stochastic, fully-observable environments.


翻译:我们展示了蒙特卡洛树搜索(MCTS)的延伸,它大大提高了对不对称和/或环状树木的效率。对搜索树进行非对称的终止带来了一种不确定性,标准上层信任约束(UB)公式对此没有说明。我们的第一个算法(MCTS-T)假设一种非随机环境,树结构的后向性不确定性,并用修改的UCB公式来利用它进行勘探。结果显示,在一个众所周知的不对称域里,MCTS表现异常差强人意。接下来,我们将关于不对称终止的想法与树圈的存在联系起来,而同一状态在一丝痕迹中出现多次。我们的算法(MCTS-T+)的扩展,除了非随机性假设完全可观察性外,还包括完全可观察性,进一步提高环域的搜索效率。 OpenAI Gym 和 Atarri 2600 游戏的基准测试表明,我们的算法总是比标准的 MCTS(MTS)更好或至少相等,并且可以成为非观测环境的首选树搜索算法。

1
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员