Predicting and discovering drug-drug interactions (DDIs) using machine learning has been studied extensively. However, most of the approaches have focused on text data or textual representation of the drug structures. We present the first work that uses multiple data sources such as drug structure images, drug structure string representation and relational representation of drug relationships as the input. To this effect, we exploit the recent advances in deep networks to integrate these varied sources of inputs in predicting DDIs. Our empirical evaluation against several state-of-the-art methods using standalone different data types for drugs clearly demonstrate the efficacy of combining heterogeneous data in predicting DDIs.
翻译:对利用机器学习预测和发现药物-药物相互作用进行了广泛研究,然而,大多数方法侧重于药物结构的文本数据或文字表述,我们首先介绍了使用多种数据来源的工作,如药物结构图象、药物结构弦图象和药物关系关系关系关系表象作为投入。为此,我们利用深层网络的最新进展,将这些不同投入来源纳入对DDI的预测。我们对使用独立的药物不同数据类型的几种最先进的方法进行的经验评价,清楚地表明了在预测DDI时将多种数据结合起来的功效。