The calibration of extrinsic parameters and clock offsets between sensors for high-accuracy performance in underwater SLAM systems remains insufficiently explored. Existing methods for Doppler Velocity Log (DVL) calibration are either constrained to specific sensor configurations or rely on oversimplified assumptions, and none jointly estimate translational extrinsics and time offsets. We propose a Unified Iterative Calibration (UIC) framework for general DVL sensor setups, formulated as a Maximum A Posteriori (MAP) estimation with a Gaussian Process (GP) motion prior for high-fidelity motion interpolation. UIC alternates between efficient GP-based motion state updates and gradient-based calibration variable updates, supported by a provably statistically consistent sequential initialization scheme. The proposed UIC can be applied to IMU, cameras and other modalities as co-sensors. We release an open-source DVL-camera calibration toolbox. Beyond underwater applications, several aspects of UIC-such as the integration of GP priors for MAP-based calibration and the design of provably reliable initialization procedures-are broadly applicable to other multi-sensor calibration problems. Finally, simulations and real-world tests validate our approach.


翻译:在水下同步定位与建图(SLAM)系统中,为实现高精度性能所需传感器间外部参数与时钟偏移的标定问题尚未得到充分研究。现有针对多普勒速度计程仪(DVL)的标定方法或受限于特定传感器配置,或依赖过度简化的假设,且均未实现平移外部参数与时间偏移的联合估计。本文提出一种适用于通用DVL传感器配置的统一迭代标定(UIC)框架,该框架以最大后验概率(MAP)估计形式构建,并引入高斯过程(GP)运动先验以实现高保真运动插值。UIC通过高效的高斯过程运动状态更新与基于梯度的标定变量更新交替进行,并辅以经证明具有统计一致性的序列初始化方案。所提出的UIC方法可扩展应用于惯性测量单元(IMU)、相机及其他模态的协同传感器标定。我们同时开源了一套DVL-相机标定工具箱。除水下应用外,UIC的多个核心特性——例如基于MAP标定的高斯过程先验融合方法,以及可证明具有可靠性的初始化流程设计——对其他多传感器标定问题具有广泛适用性。最后,通过仿真与真实场景实验验证了本方法的有效性。

0
下载
关闭预览

相关内容

第16届IEEE泛在智能与计算国际会议(IEEE International Conference on Ubiquitous Intelligence and Computing 2019)将包括一个高选择性的技术论文计划,并附有研讨会、演示、小组讨论和主题演讲。我们欢迎高质量的论文,这些论文描述了推动普适智能和计算技术发展的原创和未发表的研究。官网链接:http://www.smart-world.org/2019/uic/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
13+阅读 · 2021年5月25日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员